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Abstract 

Biosignature  is  one  of the  most  important  evidences  of  life  available  to 
researchers. However, many  complex  physical  and  chemical  phenomena 
can mimic  prints of life so closely  that  special  methods  are  required  to  make 
the distinction. In  addition  to that, life, in  principle,  can be composed of 
components  which  are  fundamentally  different  from  those  known  on Earth. 
That  is  why  identification  of  biosignatures should be  based  upon  some 
phenomenological invariants. Such invariants,  within the framework  of 
Newtonian formalism, are  introduced  and  discussed. 

1 .  Introduction 

It does not  take  much  knowledge or experience  to  distinguish a living  matter from 

inanimate in day-to-day situations. Paradoxically,  there  is  no  formal  definition  of  life 

which  would  be  free  of exceptions and  counter-examples ['I. There  are  at  least  two reasons 

for that. Firstly, many  complex  physical  and  chemical  phenomena  can  mimic  prints  of  life 

so closely that special  methods  are  required  to  make  the distinction. Secondly, 

extraterrestrial  life,  in  principle,  can  be  composed of components  which  are  fundamentally 

different from those  known  on Earth. 

One of  the  most important  evidences of extraterrestrial  life  available  to  researchers is 

a biosignature, i.e., a print  of a living  system in environments or samples from planets. 

For  the reasons mentioned above, identification  of a biosignature  requires  development of 

special criteria which  would  allow  one  to  disqualify  any  inanimate  forgery,  and  at the same 

time  to  recognize  life  even if it  is  in a form  fundamentally  different from those  on Earth. 

Since living systems belong to Newtonian  macro-world, it is  reasonable  to start with 



Ncwtonim formalism  which  would  capture  some  phenomenological  invariants of living 

system based  upon  postulated  definition of life. Such a definition has  to  reconcile 

experimental observations,  Newtonian  mechanics  and  thermodynamics. 

Firstly,  living  systems  have a sense of  the direction of  time  and therefore, their 

models  must be irreversible.  In  addition to that,  evolution of living systems is  directed 

toward  higher  levels of  complexity  if  complexity  is  associated with a number  of  different 

features. Combining  Newtonian  mechanics,  thermodynamics  and the phenomenon of 

instability, both  of  these  properties  can  be  implemented.  However,  they  are necessary, but 

not  sufficient for life:  there  are  plenty  of  physical  processes  which possess the  same 

characteristics: chaos, turbulence,  convection,  etc. 

The  third  property of living systems is  the  capacity  to  stimulate  their own 

replication; however, even  that  property  is  not  sufficient  since it cannot  disqualify  fire or 

other exponentially  unstable  physical  processes. 

The  fourth  property  can be associated  with a so called  “free will”, or in  terms  of 

mathematical formalism, with a probabilistic  evolution.  Again,  there  are  plenty  of  physical 

phenomena (chaos, Langeven  models)  whose  evolution  can  be  described  only 

probabilistically. 

The  fifth  property  can be  stated as the  ability  to  perform  certain transitions or 

motions which  are  not  directly  controlled  from outside. Such an  autonomy  must be 

supported by energy flux (with  low  entropy  input  and  high  entropy output), and as a “side 

effect”, it  can  be  accompanied  by  information  processing. Indeed, autonomous systems 

can converge to a limit  cycle (flutter), to  chaotic  attractor  (Lorenz  model) or to a static 

attractor (neural nets), and that can serve as a memory. 

All the five properties  listed  above  exhibit  “complexity  without  purpose,”  and  that  is 

why they are  necessary,  but not sufficient  for  life  identification. We will  postulate  now  the 

last  property: any  living system has an objective of its  activity.  The  global  objective  is 

always to survive, but  local  objectives  can be different  as  long as they  contribute  to  the 
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global one. From  the  viewpoint  of  phenomenological  formalism, a living system must 

possess its own  model  and  interact with it to achieve  the  objective.  For instance, it can run 

the  model  faster  than  real  time  thereby  predicting  its  future  state,  compare  this  state  with  the 

objective  and  change the  strategy if necessary.  Actually, all the  man-made  controlled 

systems mimic this  property of a living  system (however, controlled systems usually do 

not possess all  the  previous  five  properties  mentioned above). 

The purpose  of  this  paper  is  to  develop a phenomenological  model  of  living 

systems which  would  include  all the properties  listed above, and to establish physical 

invariants of the  corresponding  biosignatures. One  of  the  challenges  of  the approach is to 

keep  the  model  within  the  Newtonian  formalism  excluding any  man-made  devices (such as 

random number generators). 

2. Background 

The  mathematical  theory  of  active systems, both  natural  and  artificial,  has a 

relatively  short  history.  The  most  general  approach  to  it  is  presented  in  the  monograph ['I . 

On a time-scale of motions of  simple  individual  elements, a one-component  model  is 

represented by a set  of ODE: 

ci, = g;(a,,.  . .a,,), i = I,. .  .n ( 1 )  

where a, are  state variables, and g is a non-monotonous  function with, at least, two 

exremal parts. An isotropic  multicomponent  active  medium  is  described  by a system of 

PDE: 

b, = ~ , ( { u ~ } ) + ~ B ~ ( V U ~ ) * + ~ D ; , V ' ~ ~  
i ij 

The main  source of complexity of the  models (1) and (2) is  the  multi-extrema1  configuration 

of the functions g, which causes such phenomena as phase  transition,  trigger and spiral 

waves, traveling pulses, etc. 
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Eqs. ( I )  and (2) can be equipped by random  forces (noise), and  then  they  take form 

of the Langeven  equations  whose  probability  evolution is described by  the associated 

Fokker-Planck equation. 

Although solutions to  Eqs. (1) and (2) can  exhibit a variety of complex behaviors, 

this is still a “complexity  without a purpose’”  and  there  are  plenty  of  inanimate systems 

which  are  governed by  the  same  equations (for instance, the whole class of reaction- 

diffusion processes). 

The models (1) and (2) have  other  limitations,  and  one of  them  is continuous (non- 

punctuated) evolution. As many  leading  biologists suggest, the evolution of biological 

systems should include  pauses for sensing the  environment  and choosing the  direction of 

the  next  step;  this  paradigm  controlled  by a biological  clock  makes  the  evolution 

punctuated. From the  mathematical viewpoint, it  means  that  behaviors of living systems 

should include a random-walk  component.  Obviously  such a component  cannot be 

produced  only by external  noise  since the solutions to  the Fokker-Planck equations are 

continuous; in addition to that, external  noise does not  have  enough  power  to  drive a 

biological system. 

In  the  next  sections  we  will discuss a model  in  which all these  limitations  are 

removed. 

3. Model of Punctuated Evolution 

The model  proposed in this  section  is  based  upon  dynamical  simulation  of  random 

walk introduced and discussed in [4-61 . 

Consider a rectilinear  motion of a particle  of  unit  mass  described by  the following 

differential  equations: 

6 = vv’/.’ Sinot + E ,  v = Const, o = Const, / E [  << vIZ)’l”I 

x = v  
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where x and v are  position  and  velocity,  respectively,  and E ( t )  is vanishingly small noise. 

As shown in [4*61 the  particle performs a random walk  with constant steps h and 

the  transition  periods z : 

h=64(3w) - V  , z=- -517 y 2  2n 
w 

The  probability  density f ( x , t )  is governed by  the following  difference equation: 

f (x , t+z)=pJC(x-h , t )+( l -p) f (x+h, t )  (6)  

which  represents a discrete version of the  Fokker-Planck equation, while 

j f (x ;*)dx  = 1 
- x  

and 

Several  comments  concerning a physical  interpretation  of  the  solution  to Eq. (3) should be 

made. 

Firstly, this  solution  has  an  infinite  number of equilibrium  points 

v = O ,  x=+h+hf- . . e tc .  

which  are  stable  when Sinwt < 0 ,  and  unstable  when Sinwt > 0. 

Since 

the  Lipschitz  conditions at the  equilibrium  points  are  violated,  and  that  makes  them  terminal 

[41 attractors or repellers. As a result of that,  the  transition  time z is finite (see Eq. (5)). 

Secondli, the  noise E is  not driving  the  evolution:  it  only  triggers  the  mechanism 

of instability  which controls the  energy  supply  via  the  harmonic  oscillations Sinwt . As 

follows from Eq. (3), E can  be  ignored  when i~ = 0 or when u f :  0 ,  but the equation is 

stable, i.e., at t = x/@, x/3w-..etc. indeed, at  these  instants,  the  solution to Eq. (3) 
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has a choice to  move  left (if Sgn E < O), or right (if  Sgn E > 0 ) .  In other words, the sign 

of E at  the  equilibrium  points  uniquely  defines  the  evolution of the solution. But since E is 

a random  variable,  the  evolution  becomes  random  too. 

Thus, the solution to Eqs. (3), (4) combines  acting  (the  transition from one 

equilibrium  point  to  another)  and  “thinking”  (the  decision  making process based  upon 

Sgn E ) .  Both  the  energy  reservoir  for  acting, i.e., the  harmonic  oscillations Sinwt, and 

the “brain,” i.e., the noise E can  be  simulated by different (autonomous) dynamical 

systems: the first system is supposed to converge to a periodic  attractor,  and  the second 

one-to a chaotic  attractor. , ,  

i 

4.  The Noise Structure 

In  this  section  we  will  analyze  possible structures of the noise E which is 

responsible for triggering the  transition  from  one  equilibrium  to  another  in  the  direction 

depending upon Sgne . 

Regardless of the type of the  corresponding  chaotic  attractor,  the  noise  can be 

derived  from a sample of  an  underlying  stationary  stochastic  process 1 characterized  by 

some probability  density @ ( A ) .  Suppose that 

where (A) is  the  mean  of A 

and p is some  deterministic  variable. 

Then 

while 
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O(O)=-, " U ,  U S O l l  (14) 

Obviously  any  stationary  stochastic  process  uniquely  defines  the  function O ( p ) .  This 

function, in  many practical  cases (for instance, when  the stochastic  process A is  generated 

by a logistic  map 14] ) can be approximated as: 

where A,,,,, is  the  largest  term in the  time  series A([) .  

In general, p can  depend  upon  the  particle  coordinate x, its  probability  distribution f ( x ) ,  

and  the  functionals of f ( x )  such  as  the  mean 

m =< x >= x f ( x )  

the  variance 

or the Shannon uncertainty  (entropy) 

i.e., 

Actually,  all  the  variety  and  complexity  of the  particle  behavior  described  by Eqs. (3) and 

(4) is defined by  the  structure  of  the  function (19). 

In  the  next sections, a variety  of structures of Eq. (19) as well as specific 

characteristics of the  corresponding  behaviors  will be analyzed. 

5. Complexity  Without  Objective 

We  will  start  with  the  simplest  case of Eq.  (19)  when p depends only  upon  the 

state  variable x 
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Then Eqs. (3), (4) and (6) reduce to 

i, = VV‘’.’ Sinat + A- < A, > - , u ( x ) ,  ,i = v 

f ( x , t + z ) = ~ [ ~ ( x ) ] f ( x - h , t ) t - { f - ~ [ p ( x ) ] } f ( x + h , r )  (22) 

Since a closed form  solution  of Eq. (21) is  not  available, we  will confine ourselves 

with a qualitative analysis. 

Suppose first that 

p=O 

Then, as follows from Eq. (14), 

1 e=- 
2 

and  the  solution  to Eq. (22) subject  to  the  initial  conditions 

f ( O , O ) = 1 ,  f (x ,O)=O if x#O 

describes a symmetric  unrestricted  random  walk: 

1 
2 

f ( x , t )  = C,: 2”’, k = -(n + 1); n = integer 

Here  the  bionomial  coefficient C,k should be  interpreted as zero  whenever k is  not an 

integer in the  interval [O,IZ], and n is the  total  number of steps. 

At  this  point  we  have  to  clarify  the  relationships  between Eqs. (21) and (22) which 

are the  following:  if  one  fixes the initid conditions  as 

x=o, v = o  (27) 

and run Eqs. (2 1) many  times, he  will  get  different  chaotic-like  time series as solutions; but 

if he performs a statistical  analysis  of  these  solutions  and  find  the  evolution of the 

probability density, this  evolution  will  coincide  with the solution to Eq. (21). In other 

words,  the probabilities described by Eq. (22) are  simulated by  the dynamical system (2 1). 

Let us assume now that, instead of Eq. (23), 
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p = - ( I  x ,  LI  = Const > 0 (28) 

Then the  number of negative  signs in the string of  numbers ( I  I )  will prevail if x > 0 since 

the effective zero-crossing  line  moves  down  away  from the middle. Similarly, the number 

of positive  signs in (1 1) will  prevail  if x < 0.  thus,  when x = 0 at t = 0 ,  the system starts 

with an unrestricted  random  walk (26), and 1x1 grows. However, this growth as a 

feedback changes signs in Eq. (1 1) such  that 

x<Oifx>O,and  x>Oif  x<O (29) 

Moreover, as follows from Eq. (15), with  probability  one  the  system  will  escape  the 

domain  where 

As a result of that, 

Hence, the  dynamical  system (21), (28) subject to  the  initial condition (25) simulates a 

symmetric  random  walk  restricted by  the boundaries (31). The  probability  evolution for 

this stochastic process is  described  by  the solution to Eq. (22). 

It  has  to  be  emphasized  that  although  the  noise E is  vanishingly  small (see Eq. (3)), 

the  boundaries (3 1) can be  sufficiently  large  since uz must  have  the  same  order  as E .  This 

should not  be surprising because,  as  mentioned  earlier, the noise  only  triggers  the 

mechanism  of  instability while the energy for the  motion  is  supplied by  the  harmonic 

oscillations Sinwt . 

As a next  step  toward a higher  complexity,  replace Eq. (28) by  the following: 

p = -U Sinyx, a = Const > 0 (32) 

For 
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the  behavior of the  solution to Eqs. (2 1) qualitatively  remains the same, i x . ,  it is described 

by a symmetric random  walk  restricted by the  boundaries (3 I ) .  

However, if 

the  motion  becomes  unstable  since 

Sgn x = Sgn x 

and x will  grow  until  it  approaches  the  basin  of  the next attractor: 

The probability of  this  transition  is: 

Hence, with  the  probability pr the  boundaries of the random  walk  are  shifted  from 

Thus, the noise structure (32) leads  to  much  more  complex  behavior of  the solutions to Eq. 

(21), and this complexity is associated  with the  alternation  of  the effects of  stability 

(Sgn  x = -sgn x )  and  instability (Sgn  x = Sgn X ) .  Actually  similar  phenomenon (but on a 

lower  level of complexity) follows from  the  multi-extremal  function (1) discussed in 

Further increase of  complexity  can be associated  with  introducing  memory  by 

replacing Eq. (4) with  the  following: 

i=u( t )+a ,  u(t-r,,)+a2u(r-2r,,)+ ... etc. 

providing  non-Markovian  correlations  between  present  and  past. 

(39) 
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However, there  is it more  fundamental  way to enhance  the  dynamical complexity. 

Indeed, consider the following  noise  structure: 

p = C I ( X ) ,  CI = Const > O (40) 

Now Eqs. (21)  and (22) are  coupled  (see Eq. (16)). Moreover, Eq. (22) becomes 

nonlinear. 

Subject  to  the  initial  conditions 

f ( O , O ) = I ,  f ( x , O ) = O  if ~ $ 0 ,  x=Oat  r = O  (41) 

the solution to Eqs. (21),  (22) describes a symmetric  unrestricted  random  walk (26) since 

for this process 

( x )  5 0 (42) 

However, for different  initial  conditions: 

f (1 ,O)  = 1 f (x ,O)  = 0 if x # 1, x = I at t = 0 (43) 

the solution to  the  same  system  is  fully  deterministic:  it  is  described  by a traveling  wave  of 

the  delta-function: 

Thus, one can observe a fundamental  non-linear  effect: the dependence of  the attractor 

upon  the  initial  conditions. In general, Eqs. (21), (22) with  the  noise  structure depending 

upon  the  probability f (as in Eqs. (40), or (19) may have different attractors  and repellers, 

i.e., different asymptotic solutions for different  initial conditions. It should be  recalled  that 

in all  the  previous cases when Eq. (22) was  linear, the solution  had  only  one  type  of 

asymptotic behavior  regardless of initial  conditions. 

6 .  Systems with Prescribed Objectives. 

As has  been  demonstrated  in the previous section, relatively  simple structures of 

noise (1  1) (see Eqs. (23), (28) (32), and (40) lead  to a high  level of behavioral  complexity 

which, in principle,  can  match  the  complexity  of  living systems. However, all  these 
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systems do not  exploit  their  complexity  for  the  purpose of survival, or to any other 

purpose, and  that disqualifies them  as  models  of  living  systems. 

In  this  section  we will introduce systems with  objectives  starting with the  simplest 

case when the  objective  is  prescribed. As a rule, such systems must  include some 

additional  parameters  which  represent  the  “master”  enforcing the objective. 

Let us turn  to Eq. (28) and  assume  that  the  coefficient n depends upon an 

external  parameter cp 

a = ~(cp), while nmax = ~(cp,,), and cp = cp(x, t )  (45) 

where cp can  represent  the  ambient  temperature  or  concentration  of some chemicals  which 

are important for  the  system  survival. 

Now  the  objective  can be formulated as follows:  find such a small  region  of x 

where cp is sufficiently  close to its  optimal  value of cp,, . 

For  the  sake  of  mathematical  simplicity,  we  will  assume  that n(cp) and cp(x,t) are 

slow changing functions, i.e., 

Then  eventually  the  solution to Eqs. (3), (4), (28) and (45) will be trapped in the  region 

following from Eq. (3 1): 

As follows from Eq. (45) 

Ixlrp=’p,, < I b l r p t r p , ,  (48) 

i.e., the stochastic attractor (47) has  the  least  uncertainty  among all the possible stochastic 

processes (31). In  other words, the process  of  approaching  the  objective  is  characterized 

by decrease of  the entropy: 
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dH -<o  
c l t  (49) 

It should be noticed that such an “inverse”  evolution of the  entropy is due to the fact that  the 

system (3), (4) is not  isolated as a result of enforcement of the  objective  via  the  external 

parameter 9.  Nevertheless, the  condition (49) is  necessary, but  not sufficient for a living 

system. Indeed, there is plenty  of  physical (non-isolated) systems with  self-organization 

properties (i.e., with  different  type of attractors)  for  which the  inequality (49) holds. 

However, one can  argue  that such physical systems do not “benefit”  from  the property 

(49), and  therefore,  they do not  have  an  objective.  Unfortunately,  the  detection  of the 

attractor  which represents an  objective  for  the  system  cannot  be  made  based  only upon 

biosignatures: some  additional  information  will be required. 

7. Systems with Emerging Objectives 

The  main  difficulties in detection of life  start  with  the  fact  that  there  is  no  definition 

of life. In  this  section  we  will  try  to  find  such a level of complexity at which  we can draw a 

sharp boundary  between  living  and  inanimated systems in terms  of  phenomenalogical 

invariants. For that purpose we  will turn to  the  concept  of  reflection  introduced in 

psychology [’I . Reflection  is  traditionally  understood as the  human  ability  to  take  the 

position of an observer in  relation  to  one’s  own  thoughts.  In  other words, the reflection is 

a self-awareness via  the  interaction  with  the  “image of the self.” In  terms of the 

phenomenological  formalism  proposed above, Eq. (6 )  represent  the  probabilistic  “image” 

of the  dynamical system (3), (4). If this  system “possesses” its own image, then it can 

predict,  for  instance, future expected  values of its  parameters, and, by interacting  with  the 

image,  change  the  expectations if they  are  not  consistent  with  the objective. In this context, 

Eqs. (3) and (4) simulate acting, and Eq. (6) simulates  “thinking.” Their interaction can b e 

implemented  by  incorporating  probabilities,  its  functions  and  functionals  into  the noise 

structure (see Eq. (19)). 
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Now  we  are approaching the  central  point of our discussion: the feedback (19) 

nukes the  probability  evolution (6 )  (with  reference to Eqs. (8), and (13) nonlinear. It 

should be recalled that any stochastic  process  without  memory (i.e., Markov process) can 

be described by linear  Fokker-Planck  equation [‘I , or its  discrete version, the Chapman- 

Kolmogorov equations. Only  that  type  of  processes  have  been observed in physical (i.e., 

inanimate)  world.  But  coupling  between the  dynamical equations and  their  probabilistic 

“image” does not  contradict any law  of  physics:  for instance, the  Langeven equations can, 

in principle, interact  with  the  corresponding  Fokker-Planck  equation if the external  noise 

depends upon the  probability  distribution  of  the  state  variable.  Strictly speaking, such 

processes are  Markovian  since  the  future  still  depends  only  upon  the present, but  not  the 

past. However, now  present  includes  not  only  values of the  state  variable,  but also its 

probability  distribution,  and  that  leads to nonlinear  evolution of random  walk. 

For the proof-of-concept, suppose that the  noise  structure (19) is  presented in  the 

following form: 

In  addition  to  that, suppose that in Eq. (5) 

h h+0, ~ + 0 , -  = I  
z 

Then one arrives  at  the continuous form of Eq. (6): 

which simulates a traffic  flow. 

The  solution to  this  equation  is  well-known:  starting with a flat distribution, it 

forms shock waves. 

Hence, if 
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+at 1x1 I L 
0 otherwise 

at t = 0 

and  therefore, the entropy 

H = H,,,, at t = 0 

then,  eventually 

JH -cO and H - 0  at t + m  
at 

(It  can  be  verified [‘“I that the  normalization  condition  for j’(x,t) is preserved). 

Thus , as a result of  interaction  with  its  own  “image,”  and  without  any  external 

enforcement, the system (3), (4) decreases its entropy  in  the  course  of  nonlinear  evolution 

of probability, and, according to our definition,  that is the  privilege  of  living systems. It 

should be  emphasized  that the system (3), (4) is not  isolated: it consumes energy  via  the 

harmonic  oscillations Sinor, and  therefore,  the  condition (55) does  not  violate  the second 

law  of thermodynamics. 

Eqs. (3), (4), (50), (52) illuminate  another  remarkable  property  of  living systems: 

their  ability  to  predict  future.  Indeed,  with  the  noise  structure (50), Eq. (6), (as well as its 

continuous version, Eq. (52)) does  not depend upon Eqs. (3), (4), and therefore, it can be 

run faster than  real  time. As a result  of that, future probability distributions as well as its 

invariants  (expectation,  variance, etc.) can  be  predicted  and  compared  with  the objective. 

Based  upon  that comparison, the  noise  structure (50) can  be  changed  if  needed. 

Thus, in general, living systems are better  equipped  for  dealing  with  future 

uncertainties. In  other words, their  present  motion  is  “correlated  with  future”  in  terms  of 

the  probability invariants. Such a remarkable  property  which  increases  survivability  could 

be  acquired  accidentally  and  then  be  strengthened in the  process  of  natural selection. 

It should be emphasized  that  the  ability  to  predict  results  from a special  type  of 

nonlinear  probability  evolution  generated  by  the  noise  structure  which does not depend 

explicitly  upon  the  state  variable x .  
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In general  when  Eq. (50) is  replaced by Eq. (19), and  the shift operator E is 

replaced by  the differential  operator D as 

E/, = e’‘’, E, = er’ (56) 

Eq. (52) will  be  replaced  by a nonlinear  parabolo-hyperbolic  equation  which  can describe 

shock waves, the Burger’s waves, solitons and  even chaos, in  the probability space. 

However, for the  ability to predict, Eq. (19) should not depend  explicitly  upon x.  

Nevertheless, dependence of ,LL upon  both x and f does not disqualify the system from 

being “alive”: it  only  means  that  the  system  interacts  not  only  with  its  own image, but also 

with an outside observer. 

So far we avoided  formulations  of  objectives for systems with reflections, and  we 

did it deliberately. Indeed, based  upon  the  signature  in  the  Newtonian world, one can 

detect  only  apparent  objective which, in  the case of Eq. (52), is to concentrate  the  motion 

within certain domains of  the  state  variable.  Although  such  information is not sufficient for 

finding  the  real  objective, it is  still  sufficient for detecting  life. 

8.  Discussion  and  Conclusion 

There has  been  demonstrated  that a nonlinearity  of  the  evolution  in  the  probabilistic 

space  represents a physical  invariant of the  living systems which distinguishes them from 

inanimated ones. This property  results  from  the  assumption  that a living system, by 

definition, possesses an “image  of  the self’ and  interacts  with  it in order to approach the 

objective.  One  should  notice  that  the  image  has  to  represent  some sort of abstraction of the 

original system which  preserves  only  the  most  fundamental  and  predictable  properties such 

as  expectation,  variance, etc; these  properties  become  available  after “projecting” the  system 

from  physical  into  probability  space. 

One  of  the  most  remarkable  consequences of nonlinear  evolution  of  probability is 

the  ability  of systems with reflection  to  predict  future,  and  that  makes  them  more  adaptable 

to uncertainties. A phenomenological  characteristic  of such a property  can  be  captured in 

terms  of  correlation  between  present  and future, which  eventually  results in a spontaneous 
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ability  to  concentrate the  motion within certain  domains of the state  variable  according  to  the 

objective. 

In this context, one can illuminate  the Schrodinger  statement I ” ’  that “life is to 

create order in the  disordered  environment  against  the  second  law  of  thermodynamics.’’ 

The  second  law  of  thermodynamics  is  explicitly  pronounced in the Fokker-Planck  equation 

without a drift  which describes a pure  diffusion in an  isolated  system. As follows from the 

underlying  Langevin equation, a drift  is  caused  only by  the external  force  which  can 

depend upon the  state variable, or  time,  and  due to this force, the entropy may decrease. 

However, in our model (3),(4),(6),(11),(50) of a living system, the external force does not 

exist: it is replaced  by an internal  force  which  is  fully  determined by  the probability 

distribution  at  present  time, i.e., it results  from the  interaction  between  the system and  its 

own image. Nevertheless, the entropy  still  can decrease, and that is what is  “against  the 

second law  of  thermodynamics.” Obviously, the  last  statement  cannot  be  taken  literally 

since this  system consumes energy for generating  the  harmonic  oscillations (see eq. (3), 

and therefore, it is  not isolated. 

The results  discussed in this  paper  can  be  generalized in two different ways. 

Firstly, the  same  invariant stands if Eq. (4)  is  replaced by Eq. (38), i.e., if the 

system (3), (39) has memory. 

Secondly, instead of  the single  variable x, one  can  introduce a set { x }  = x,. . . .x,, . 

Then  each  variable x; will  be governed by Eqs. (3), (4) and (6) interacting with the other 

variables  via  the  structured  noise  (compare  with  Eq. (19)): 

, u j  = pi ( { x } ,  { .f }, . . . eft) (57) 

if one assumes  that  any  single-variable  system  possesses not  only an image of the self, but 

images of other systems as well. 
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It should be recalled that dl the  models discussed in this  paper do not  include a 

capacity  of  self-replication,  since they describe the behaviors on the  life-time  scale  while 

modeling  self-replication  requires the  time-scale  of  many generations.  That  is  why  models 

of  self-replications  based  upon  the  logistic  equation  and  its  modifications  are  not  coupled 

with  the  behavorial  models,  and  therefore,  they  can  be  considered separately. 
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